Sexual Health

Sexual Health For Men

BiMix Injection

Dosage Strengths
  • Papaverine HCl 30 mg/mL, Phentolamine Mesylate 1 mg/mL. 5 mL Vial. Lyophilized.
  • Papaverine HCl 30 mg/mL, Phentolamine Mesylate 2 mg/mL. 5 mL Vial. Lyophilized.
General Information

BiMix is administered as a penile self-injection, typically considered to be a powerful class of anti-erectile dysfunction agents. While the components of BiMix (Papaverine, Phentolamine) are, on their own, indicated for a vast number of different conditions, the practice of bringing them together in concert to treat erectile dysfunction has become commonplace in sexual medicine and is now considered the go-to treatment if a patient is not responsive to conventional PDE5 inhibitors. BiMix is used in the treatment of erectile dysfunction in males. BiMix contains two drugs from complimentary classes designed to act synergistically, mixed into a sterile injection. They are:

Papaverine

A drug that causes blood vessels to expand (vasodilator); it produces an erection by allowing for increased blood flow to the penis. Papaverine interacts with adenylate cyclase resulting in increased cyclic adenosine monophosphate (cAMP) production, ultimately resulting in increased erectile capacity by relaxation of penile smooth muscle. This drug was one of the first effective therapies for erectile dysfunction administered by penile injection. Papaverine works by inhibiting phosphodiesterase nonspecifically, there are also multiple other mechanisms by which this drug acts to improve erectile capacity. The current body of medical literature has not established the predominant mechanism by which papaverine works. The multi-mechanistic manner by which this drug acts may be concentration-dependent. Experimental data, performed in-vitro, displays papaverine acting to relax the penile arteries, the cavernosal sinusoids, and the penile veins. Experiments carried out in dogs display papaverine’s ability to decrease the resistance to arterial inflow while also increasing the resistance to venous outflow. Papaverine’s ability to decrease resistance to venous outflow has been replicated in clinical studies. A veno-occlusive mechanism may be responsible for the aforementioned findings.

Biweekly intracavernous administration of papaverine for erectile dysfunction.

Participants: 50 patients age 40 to 70 years old
Administration: intracavernosal injection at the base of the penis
Dosage: 60 mg papaverine in 5 ml saline every 2 weeks
Results: Erection of 80% or more of normal was achieved by all but one patient, improves sexual potency

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response
 with an erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Treatment of impotence by intrapenile injections of papaverine and phenoxybenzamine: a double-blind, controlled trial.

Participants: 39 patients age 27 to 67 years old
Administration: intracavernosal injection
Dosage: 60 mg Papaverine in 10 ml saline
Results: 35% full restoration of erectile capacity
65% partial restoration of erectile capacity

Evaluating erectile dysfunction: oral sildenafil versus intracavernosal injection of papaverine.

Participants: 39 patients age 21 to 65 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine
Results: Papaverine improved length and circumference papaverine is effective as injection therapy for erectile dysfunction

Phentolamine

When injected into the penis, it induces an erection by relaxing and dilating the blood vessels of the penis, as well as by elevating cardiac output.

Phentolamine is classified as an Alpha-Adrenoceptor Antagonists. Noradrenaline effects the smooth muscle tone of the penile tissues by keeping the corpora cavernosa in a contracted state. By blocking the functional noradrenaline receptors, the Alpha-Adrenoceptor, erectile response can be achieved. Phentolamine competes with endogenous norepinephrine for the Alpha1-Adrenoceptor and Alpha2-Adrenoceptor. Phentolamine has similar binding capacities to both receptors. The current literature suggests that this is the main mechanism by which phentolamine exerts its physiological effects. Phentolamine also blocks 5-HT receptors, inducing the release of histamine from mast cells. Some studies also show that NOS activation could possibly be involved in another mechanism, inducing increased vasodilation.

The Alpha-Adrenoceptor Antagonist of phentolamine is considered to be complex. The non-selective receptor blocking action interacts with adrenergic nerves in a complex fashion. Phentolamine action on adrenergic nerves has not been fully established. It is thought that there might be counteracting regulation on pre-and post-junctional nerves. It is not known how the counteracting regulation might affect the efficacy of phentolamine for the treatment of erectile dysfunction.

In animal studies, penile arterial inflow resistance was decreased. This proves in vivo that the physiological response to phentolamine acts in a manner to achieve an erectile response. However, phentolamine has not displayed a significant effect on the venous outflow from penile tissues in humans. The current body of literature has not established pharmacokinetics for phentolamine.

First pass metabolism effectively reduces the efficacy in the treatment of erectile dysfunction. Therefore, this drug has to be administered by injection. The half-life of phentolamine is 30 minutes, with an effect duration of 2.5 to 4 hours. After penile injection the concentration of phentolamine in serum reaches a maximum within 20 to 30 minutes. After this amount of time has passed the drug rapidly is metabolized.

Side effects of phentolamine are rare. However, it has been reported that orthostatic hypotension, tachycardia, arrhythmias, and myocardial infarction, have occurred after penile injection. The mechanism to which this set of side effects occur has not been rationally deduced through scientific study. Phentolamine is usually added in combination with papaverine or vasoactive intestinal peptide to increase erectile response.

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with an erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Reasons Not To Take This Medicine

Do not take this medicine with any of the following medications: hypersensitivity or allergy to any component of this formulation; conditions predisposing you to priapism (painful erection lasting 4 hours or more): sickle cell anemia, multiple myeloma or leukemia; anatomical deformation of the penis or penile implants; direction by your physician that sexual activity is inadvisable or contraindicated.

Administration

 

Ideally, the injection should be administered just prior to foreplay. It is administered via intracavernosal injection and should produce an erection in 5 to 20 minutes and can be expected to last up to one hour. To prevent bruising, apply firm pressure to the injection site for 5 minutes after injecting. Do not use BiMix Injection more than two times a week; use at least 24 hours apart. There is a possibility of needle breakage with use of BiMix Injection: you should pay careful attention to your doctor’s instructions and handle syringe and needle properly.

Adverse Reactions / Side Effects

Mild to moderate pain during injection; painful sensation with erection; a small amount of bleeding at the injection site. Call your healthcare provider if you notice any redness, lumps, swelling, tenderness, or curvature of the erect penis. If you experience an erection lasting more than 2 hours, you may take 2 – 4 pseudoephedrine 30 mg by mouth once and apply an ice pack. If your erection does not go away within the next hour, seek professional help immediately. Erections that last more than 6 hours can cause serious damage to the penile tissue.

Storage

Store dry powder at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Once reconstituted keep this medicine in a refrigerator between 36°F to 46°F (2°C to 8°C). Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond-use date. Do not flush unused medications or pour down a sink or drain.

TriMix Injection

Dosage Strengths
  • Papaverine HCl 30 mg/mL, Phentolamine Mesylate 1 mg/mL Prostaglandin E1 10 mcg/mL. 5 mL Vial. Lyophilized.
  • Papaverine HCl 30 mg/mL, Phentolamine Mesylate 2 mg/mL Prostaglandin E1 20 mcg/mL. 5 mL Vial. Lyophilized.
General Information

TriMix is administered as a penile self-injection, typically considered to be the most powerful class of anti-erectile dysfunction agents. While the components of TriMix (Papaverine, Phentolamine, Prostaglandin E1) are, on their own, indicated for a vast number of different conditions, the practice of bringing them together in concert to treat erectile dysfunction has become commonplace in sexual medicine and is now considered to be the go-to treatment if conventional PDE5 inhibitors are contraindicated or nonresponsive and is now considered the go-to treatment if a patient is not responsive to conventional PDE5 inhibitors such as Viagra or Cialis. TriMix is indicated in the treatment of erectile dysfunction in males. TriMix contains three drugs from complimentary classes designed to act synergistically, mixed into a sterile injection. They are:

Papaverine

A drug that causes blood vessels to expand (vasodilator); it produces an erection by allowing for increased blood flow to the penis. Papaverine interacts with adenylate cyclase resulting in increased cyclic adenosine monophosphate (cAMP) production, ultimately resulting in increased erectile capacity by relaxation of penile smooth muscle. This drug was one of the first effective therapies for erectile dysfunction administered by penile injection. Papaverine works by inhibiting phosphodiesterase nonspecifically, there are also multiple other mechanisms by which this drug acts to improve erectile capacity. The current body of medical literature has not established the predominant mechanism by which papaverine works. The multi-mechanistic manner by which this drug acts may be concentration dependent. Experimental data, performed in-vitro, displays papaverine acting to relax the penile arteries, the cavernosal sinusoids, and the penile veins. Experiments carried out in dogs display papaverine’s ability to decrease the resistance to arterial inflow while also increasing the resistance to venous outflow. Papaverine’s ability to decrease resistance to venous outflow has been replicated in clinical studies. A veno-occlusive mechanism may be responsible for the aforementioned findings.

Biweekly intracavernous administration of papaverine for erectile dysfunction.

Participants: 50 patients age 40 to 70 years old
Administration: intracavernosal injection at base of the penis
Dosage: 60 mg papaverine in 5 ml saline every 2 weeks
Results: Erection of 80% or more of normal was achieved by all but one patient, improves sexual potency

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Treatment of impotence by intrapenile injections of papaverine and phenoxybenzamine: a double blind, controlled trial.

Participants: 39 patients age 27 to 67 years old
Administration: intracavernosal injection
Dosage: 60 mg Papaverine in 10 ml saline
Results: 35% full restoration of erectile capacity 65% partial restoration of erectile capacity

Evaluating erectile dysfunction: oral sildenafil versus intracavernosal injection of papaverine.

Participants: 39 patients age 21 to 65 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine
Results: Papaverine improved length and circumference papaverine is effective as injection therapy for erectile dysfunction

Phentolamine

When injected into the penis, it induces an erection by relaxing and dilating the blood vessels of the penis, as well as by elevating cardiac output.

Phentolamine is classified as an Alpha-Adrenoceptor Antagonists. Noradrenaline effects the smooth muscle tone of the penile tissues by keeping the corpora cavernosa in a contracted state. By blocking the functional noradrenaline receptors, the Alpha-Adrenoceptor, erectile response can be achieved. Phentolamine competes with endogenous norepinephrine for the Alpha1-Adrenoceptor and Alpha2-Adrenoceptor. Phentolamine has similar binding capacities to both receptors. The current literature suggests that this is the main mechanism by which phentolamine exerts its physiological effects. Phentolamine also blocks 5-HT receptors, inducing the release of histamine from mast cells. Some studies also show that NOS activation could possibly be involved in another mechanism, inducing increased vasodilation.

The Alpha-Adrenoceptor Antagonist of phentolamine is considered to be complex. The non-selective receptor blocking action interacts with adrenergic nerves in a complex fashion. Phentolamine action on adrenergic nerves has not been fully established. It is thought that there might be counteracting regulation on pre-and post-junctional nerves. It is not known how the counteracting regulation might affect the efficacy of phentolamine for the treatment of erectile dysfunction.

In animal studies, penile arterial inflow resistance was decreased. This proves in vivo that the physiological response to phentolamine acts in a manner to achieve erectile response. However, phentolamine has not displayed a significant effect on the venous outflow from penile tissues in humans. The current body of literature has not established pharmacokinetics for phentolamine.

First pass metabolism effectively reduces the efficacy in the treatment of erectile dysfunction. Therefore, this drug has to be administered by injection. The half-life of phentolamine is 30 minutes, with an effect duration of 2.5 to 4 hours. After penile injection the concentration of phentolamine in serum reaches a maximum within 20 to 30 minutes. After this amount of time has passed the drug rapidly is metabolized.

Side effects of phentolamine are rare. However, it has been reported that orthostatic hypotension, tachycardia, arrhythmias and myocardial infarction, have occurred after penile injection. The mechanism to which this set of side effects occur has not been rationally deduced through scientific study. Phentolamine is usually added in combination with papaverine or vasoactive intestinal peptide to increase erectile response.

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Prostaglandin E1

A potent hormone-like substance that induces erection by relaxing the penis’s blood vessels and dilating cavernosal arteries-dilation of the cavernosal arteries is accompanied by increased arterial inflow velocity and increased venous outflow resistance allowing for more blood into the penis and less blood out.

Prostaglandin E1 is administered intracavernosally. This drug is prescribed as a second-line treatment, after oral PDE5 inhibitors have been ineffective for treatment of erectile dysfunction. Several aspects of its effects and clinical use have been reviewed previously. Currently the body of medical literature demonstrates that 40 to 70% of erectile dysfunction patients respond to treatment with prostaglandin E1. The failure to respond to prostaglandin E1 has not been established. The demonstration that prostaglandin E1 with S-nitrosoglutathione in combination is more effective than prostaglandin E1 alone may shed light on the lack of efficacy in some patients.

Medications to activate alternative relaxant pathways in addition to by prostaglandin E1 may be necessary in patients who fail to respond to prostaglandin E1. Relaxation of smooth muscle is a critical component of erectile capacity. Additional agents to work in combination with prostaglandin E1 might have significant therapeutic benefits. Prostaglandin E1 with S-nitrosoglutathione or other erectile dysfunction medications, might have advantages in the treatment of male erectile dysfunction. Empower Pharmacy strives to compound medications that take advantage of multi-compound synergy. When injected into penile tissue prostaglandin E1 is readily metabolized into other erectile promoting molecules. These molecules potentiate the efficacy of prostaglandin E1. Prostaglandin E1 has been demonstrated to alter the concentrations of noradrenalin, adding a secondary mechanism of action. However, it is still believed prostaglandin E1 primarily acts directly by increasing cAMP synthesis via EP receptor interaction, increasing muscular relaxation.

Prostaglandin E1 has ubiquitous actions in controlling processes in many tissues. Known effects of prostaglandin E1 include systemic vasodilation, prevention of platelet aggregation, and ask to stimulate intestinal activity. Thus, prostaglandin E1 has very rarely been administered in a fashion to elicit a systemic response. Pharmacokinetics data is currently lacking on prostaglandin E1, the current data suggest short action duration and high rate of metabolic breakdown. After the first pass through the lungs 70% is metabolized. Because prostaglandin E1 is readily metabolized throughout the body, penile injection effects mainly penile tissues. Furthermore, this further explains the rare circulatory side effects.

 

 

 

Reasons Not To Take This Medicine

Do not take this medicine with any of the following medications: hypersensitivity or allergy to any component of this formulation; conditions predisposing you to priapism (painful erection lasting 4 hours or more): sickle cell anemia, multiple myeloma or leukemia; anatomical deformation of the penis or penile implants; direction by your physician that sexual activity is inadvisable or contraindicated. Tell your doctor if you have a condition or are taking a medicine that interferes with blood clotting.

Administration

Ideally, the injection should be administered just prior to foreplay. It is administered via intravavernosal injection and should produce an erection in 5 to 20 minutes and can be expected to last up to one hour. To prevent bruising, apply firm pressure to the injection site for 5 minutes after injecting. Do not use TriMix Injection more than two times a week; use at least 24 hours apart. There is a possibility of needle breakage with use of TriMix Injection: you should pay careful attention to your doctor’s instructions and handle syringe and needle properly.

Adverse Reactions / Side Effects

Mild to moderate pain during injection; painful sensation with erection; small amount of bleeding at the injection site. Call your healthcare provider if you notice any redness, lumps, swelling, tenderness or curvature of the erect penis. If you experience an erection lasting more than 2 hours, you may take 2 – 4 pseudoephedrine 30 mg by mouth once and apply an ice pack. If your erection does not go away within the next hour, seek professional help immediately. Erections that last more than 6 hours can cause serious damage to the penile tissue.

Storage

Store dry powder at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Once reconstituted keep this medicine in a refrigerator between 36°F to 46°F (2°C to 8°C). Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

QuadMix Injection

Dosage Strengths

Papaverine HCl 30 mg/mL, Phentolamine Mesylate 2 mg/mL Prostaglandin E1 20 mcg/mL, Atropine Sulfafte 200 mcg/mL. 5 mL Vial. Lyophilized.
Papaverine HCl 30 mg/mL, Phentolamine Mesylate 4 mg/mL Prostaglandin E1 40 mcg/mL, Atropine Sulfafte 400 mcg/mL. 5 mL Vial. Lyophilized.

General Information

QuadMixis administered as a penile self-injection, typically considered to be the most powerful class of anti-erectile dysfunction agents. While the components of QuadMix (Papaverine, Phentolamine, Prostaglandin E1, Atropine) are, on their own, indicated for a vast number of different conditions, the practice of bringing them together in concert to treat erectile dysfunction has become commonplace in sexual medicine and is now considered the go-to treatment if a patient is not responsive to conventional PDE5 inhibitors such as Viagra or Cialis.

QuadMix is used in the treatment of erectile dysfunction in males. QuadMix contains four drugs from complimentary classes designed to act synergistically, mixed into a sterile injection. They are:

 

Papaverine

A drug that causes blood vessels to expand (vasodilator); it produces an erection by allowing for increased blood flow to the penis. Papaverine interacts with adenylate cyclase resulting in increased cyclic adenosine monophosphate (cAMP) production, ultimately resulting in increased erectile capacity by relaxation of penile smooth muscle. This drug was one of the first effective therapies for erectile dysfunction administered by penile injection. Papaverine works by inhibiting phosphodiesterase nonspecifically, there are also multiple other mechanisms by which this drug acts to improve erectile capacity. The current body of medical literature has not established the predominant mechanism by which papaverine works. The multi-mechanistic manner by which this drug acts may be concentration dependent. Experimental data, performed in-vitro, displays papaverine acting to relax the penile arteries, the cavernosal sinusoids, and the penile veins. Experiments carried out in dogs display papaverine’s ability to decrease the resistance to arterial inflow while also increasing the resistance to venous outflow.  Papaverine’s ability to decrease resistance to venous outflow has been replicated in clinical studies. A veno-occlusive mechanism may be responsible for the aforementioned findings.

Biweekly intracavernous administration of papaverine for erectile dysfunction.

Participants: 50 patients age 40 to 70 years old
Administration: intracavernosal injection at base of the penis
Dosage: 60 mg papaverine in 5 ml saline every 2 weeks
Results: Erection of 80% or more of normal was achieved by all but one patient, improves sexual potency

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Treatment of impotence by intrapenile injections of papaverine and phenoxybenzamine: a double blind, controlled trial.

Participants: 39 patients age 27 to 67 years old
Administration: intracavernosal injection
Dosage: 60 mg Papaverine in 10 ml saline
Results: 35% full restoration of erectile capacity; 65% partial restoration of erectile capacity

Evaluating erectile dysfunction: oral sildenafil versus intracavernosal injection of papaverine:

Participants: 39 patients age 21 to 65 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine
Results: Papaverine improved length and circumference papaverine is effective as injection therapy for erectile dysfunction

Phentolamine

When injected into the penis, it induces an erection by relaxing and dilating the blood vessels of the penis, as well as by elevating cardiac output.

Phentolamine is classified as an Alpha-Adrenoceptor Antagonists. Noradrenaline affects the smooth muscle tone of the penile tissues by keeping the corpora cavernosa in a contracted state. By blocking the functional noradrenaline receptors, the Alpha-Adrenoceptor, erectile response can be achieved. Phentolamine competes with endogenous norepinephrine for the Alpha1-Adrenoceptor and Alpha2-Adrenoceptor. Phentolamine has similar binding capacities to both receptors. The current literature suggests that this is the main mechanism by which phentolamine exerts its physiological effects. Phentolamine also blocks 5-HT receptors, inducing the release of histamine from mast cells. Some studies also show that NOS activation could possibly be involved in another mechanism, inducing increased vasodilation

The Alpha-Adrenoceptor Antagonist of phentolamine is considered to be complex. The non-selective receptor blocking action interacts with adrenergic nerves in a complex fashion. Phentolamine action on adrenergic nerves has not been fully established. It is thought that there might be counteracting regulation on pre-and post-junctional nerves. It is not known how the counteracting regulation might affect the efficacy of phentolamine for the treatment of erectile dysfunction.

In animal studies, penile arterial inflow resistance was decreased. This proves in vivo that the physiological response to phentolamine acts in a manner to achieve erectile response. However, phentolamine has not displayed a significant effect on the venous outflow from penile tissues in humans. The current body of literature has not established pharmacokinetics for phentolamine.

First pass metabolism effectively reduces the efficacy in the treatment of erectile dysfunction. Therefore, this drug has to be administered by injection. The half-life of phentolamine is 30 minutes, with an effect duration of 2.5 to 4 hours. After penile injection the concentration of phentolamine in serum reaches a maximum within 20 to 30 minutes. After this amount of time has passed the drug rapidly is metabolized.

Side effects of phentolamine are rare. However, it has been reported that orthostatic hypotension, tachycardia, arrhythmias and myocardial infarction, have occurred after penile injection. The mechanism to which this set of side effects occur has not been rationally deduced through scientific study. Phentolamine is usually added in combination with papaverine or vasoactive intestinal peptide to increase erectile response.

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Prostaglandin E1

A potent hormone-like substance that induces erection by relaxing penile blood vessels and dilating cavernosal arteries Dilation of the cavernosal arteries is accompanied by increased arterial inflow velocity and increased venous outflow resistance allowing for more blood into and less blood out of the penis.

Prostaglandin E1 is administered intracavernosally. This drug is prescribed as a second-line treatment, after oral PDE5 inhibitors have been ineffective for treatment of erectile dysfunction. Several aspects of its effects and clinical use have been reviewed previously. Currently the body of medical literature demonstrates that 40 to 70% of erectile dysfunction patients respond to treatment with prostaglandin E1. The demonstration that prostaglandin E1 with S-nitrosoglutathione in combination is more effective than prostaglandin E1 alone may shed light on the lack of efficacy in some patients.

Medications to activate alternative relaxant pathways in addition to by prostaglandin E1 may be necessary in patients who fail to respond to prostaglandin E1. Relaxation of smooth muscle is a critical component of erectile capacity. Additional agents to work in combination with prostaglandin E1 might have significant therapeutic benefits. Prostaglandin E1 with S-nitrosoglutathione or other erectile dysfunction medications, might have advantages in the treatment of male erectile dysfunction. Empower Pharmacy strives to compound medications that take advantage of multi-compound synergy. When injected into penile tissue prostaglandin E1 is readily metabolized into other erectile promoting molecules. These molecules potentiate the efficacy of prostaglandin E1. Prostaglandin E1 has been demonstrated to alter the concentrations of noradrenaline, adding a secondary mechanism of action. However, it is still believed prostaglandin E1 primarily acts directly by increasing cAMP synthesis via EP receptor interaction, increasing muscular relaxation.

Prostaglandin E1 has ubiquitous actions in controlling processes in many tissues. Known effects of prostaglandin E1 include systemic vasodilation, prevention of platelet aggregation, and ask to stimulate intestinal activity. Thus, prostaglandin E1 has very rarely been administered in a fashion to elicit a systemic response. Pharmacokinetics data is currently lacking on prostaglandin E1, the current data suggest short action duration and high rate of metabolic breakdown. After the first pass through the lungs 70% is metabolized. Because prostaglandin E1 is readily metabolized throughout the body, penile injection effects mainly penile tissues. Furthermore, this further explains the rare circulatory side effects.

Atropine

Atropine sulfate has been used successfully in many studies in conjunction with vasoactive agents in the treatment of erectile dysfunction, when given as an intracavernosal injection.

Atropine sulfate works by inhibiting the nervous system receptors that control smooth muscle relaxation. Atropine sulfate is an anticholinergic agent that diminishes cholinergic inhibition of the adrenergic and cholinergic excitation of the nonadrenergic, noncholinergic neuroeffector systems that control neurogenic corporeal smooth muscle relaxation.

The mechanism of action also includes the release of endothelium derived relaxing factor, however this is more so involved at higher formal logical doses.

 

Reasons Not To Take This Medicine

Do not take this medicine with any of the following medications: hypersensitivity or allergy to any component of this formulation; conditions predisposing you to priapism (painful erection lasting 4 hours or more): sickle cell anemia, multiple myeloma or leukemia; anatomical deformation of the penis or penile implants; direction by your physician that sexual activity is inadvisable or contraindicated. Tell your doctor if you have a condition or are taking a medicine that interferes with blood clotting.

Administration

Ideally, the injection should be administered just prior to foreplay. It is administered via intravavernosal injection and should produce an erection in 5 to 20 minutes and can be expected to last up to one hour. To prevent bruising, apply firm pressure to the injection site for 5 minutes after injecting. Do not use QuadMix Injection more than two times a week; use at least 24 hours apart. There is a possibility of needle breakage with use of QuadMix Injection: you should pay careful attention to your doctor’s instructions and handle syringe and needle properly.

Adverse Reactions / Side Effects

Mild to moderate pain during injection; painful sensation with erection; small amount of bleeding at the injection site. Call your healthcare provider if you notice any redness, lumps, swelling, tenderness or curvature of the erect penis. If you experience an erection lasting more than 2 hours, you may take 2 – 4 pseudoephedrine 30 mg by mouth once and apply an ice pack. If your erection does not go away within the next hour, seek professional help immediately. Erections that last more than 6 hours can cause serious damage to the penile tissue.

Storage

Store dry powder at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Once reconstituted keep this medicine in a refrigerator between 36°F to 46°F (2°C to 8°C). Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond-use date. Do not flush unused medications or pour down a sink or drain.

Sildenafil Troches or RDTs

Dosage Strengths

Varying anywhere between 20 to 100mg

General Information

Initially developed for the treatment of pulmonary hypertension, angina, and other cardiovascular conditions, sildenafil citrate was accidentally found to be beneficial in males who suffered from erectile dysfunction (ED). Prior to the discovery of its benefits in treating ED, this condition was considered to be an inevitable part of aging in men or due to underlying psychological causes. After its approval in 1998 by the U.S. Food and Drug Administration for the treatment of ED, the popularity of sildenafil citrate has skyrocketed over the past couple of decades as health care providers generally recommend this medication as the first-line therapy in the management of erectile dysfunction in men. Other contributing factors to its appeal and popularity is that sildenafil citrate can be taken orally on demand, is generally well tolerated, with minimal adverse effects.

Sildenafil citrate is a vasoactive medication belonging to the drug class of phosphodiesterase – 5 enzyme (PDE-5) inhibitors; it is a competitive antagonist of this enzyme. PDE-5 can be found all over the human body especially in the corpus cavernosum within the penis, striated and smooth musculature, as well as in platelets. However, PDE-5 has the largest distribution in the penile corpus cavernosum which is why sildenafil citrate is able to work selectively in this part of the body.

Sildenafil citrate is generally administered orally. However, it can also be administered intravenously or sublingually. Even though its most popular clinical indication for use is in the management of erectile dysfunction, it is also used in the management of pulmonary hypertension, persistent pulmonary hypertension of the newborn, Raynaud’s phenomenon resistant to other vasodilators, as well as in the prevention of pulmonary edema at high altitudes. After oral ingestion, absorption of sildenafil citrate rapidly occurs mainly in the small intestine from where it is then transported in the bloodstream to its area of action. Sildenafil citrate is metabolized in the liver through the action of the hepatic isoenzymes cytochrome P450 3A4 and cytochrome P450 2C9. Following hepatic metabolism, the metabolites are excreted mainly in the stool and, to a lesser degree, in the urine.

Sildenafil citrate is classified as a pregnancy category B drug by the Food and Drug Administration. Studies have not demonstrated definite risks to fetuses when sildenafil is administered to pregnant mothers. At present, there are no definite clinical indications that warrant the administration of sildenafil citrate in women. Studies done till date have not indicated that sildenafil citrate has comparable benefits in women as they do in men. There are other studies that are still ongoing, however, and their outcomes may provide further insight regarding the utility and benefits of sildenafil in women.

Mechanism of Action
Pharmacokinetics

As earlier stated, sildenafil citrate can be administered orally, sublingually, or intravenously. In the management of erectile dysfunction, however, the oral and sublingual routes are the means by which the medication is commonly administered. After oral ingestion, sildenafil citrate is rapidly absorbed within the small intestine, with a peak plasma concentration time of anywhere between 30 and 120 minutes and a median time of 60 minutes in fasting individuals. It has a bioavailability of approximately 40 percent after oral administration.

Metabolism of sildenafil citrate occurs primarily in the liver through the action of the hepatic microsomal isoenzymes cytochrome P450 3A4 and 2C9. After the action of the isoenzymes on sildenafil, it is broken down into an N-desmethyl metabolite. Both sildenafil citrate as well as its N-desmethyl metabolite breakdown product are tightly bound to plasma proteins and they have an approximate half-life of four hours. it is estimated that about 96 percent of sildenafil and its metabolite are bound to plasma proteins after oral ingestion. Following its metabolism, the majority of sildenafil citrate is excreted in the stool; a lesser amount, about 13 percent of sildenafil metabolites, is excreted in the urine.

There are a number of factors that can interfere with the metabolism of sildenafil, thereby increasing or decreasing its concentration in the body. Some of these factors include the following:

  • Hepatic impairment: Individuals who have significant hepatic disease such as liver cirrhosis may experience a significant increase in plasma sildenafil levels. This is because the production of the hepatic isoenzymes cytochrome P450 3A4 and 2C9 are markedly diminished in liver cirrhosis. As a result of this diminished production of the hepatic isoenzymes, the body is not able to adequately metabolize sildenafil citrate, resulting in increased plasma levels.
  • Renal impairment: Individuals with significant renal disease as evidenced with a creatinine clearance of less than 30mL/min will have a marked increase in plasma sildenafil levels after oral ingestion. Since sildenafil and its metabolites are excreted through the kidneys, renal diseases will impair the ability of the kidneys to perform this task adequately.
  • Age: For reasons that are yet to be fully determined, there is a 40 percent increase in the plasma levels of sildenafil and its N-desmethyl metabolite when administered to men greater than 65 years of age.
  • Cytochrome P450 3A4 inhibitors: The concomitant use of drugs known to inhibit the hepatic cytochrome P450 enzymes may result in increased plasma levels of sildenafil. Examples of drugs that are known P450 inhibitors are macrolide antibiotics such as erythromycin, antifungal agents such as ketoconazole, and protease inhibitors such as indinavir. By inhibiting the production of cytochrome P450, hepatic metabolism of sildenafil does not occur, leading to its increased levels in plasma.
Clinical Indications

There are several clinical conditions that may warrant the use of sildenafil citrate. These include:

  • Erectile dysfunction: Especially in men, this is by far the most common reason that people take sildenafil citrate.
  • Pulmonary hypertension: This condition may present in childhood, known as primary or idiopathic pulmonary hypertension, or in adulthood. In both idiopathic and adult-onset pulmonary hypertension, the blood vessels in the pulmonary vasculature are constricted and cause a significant increase in pulmonary arterial pressure; this, if not corrected, may result in cardiac failure.By inhibiting the activity of PDE-5, sildenafil allows cGMP to work within the lungs and dilate the pulmonary vessels. This results in a decrease in pulmonary arterial pressure, thereby leading to decreased strain on the heart and a concomitant improvement in cardiac performance.
  • Raynaud’s phenomenon: Characterized by transient vasospasm and digital ischemia upon exposure to cold, sildenafil has been shown to be of demonstrable benefit in managing instances of Raynaud’s phenomenon that are not responsive to other vasodilator drugs
Contraindications/ Precautions

There are certain conditions under which sildenafil citrate should be administered with caution or outright avoided. Some of these conditions are:

  • Hypersensitivity: Sildenafil is absolutely contraindicated in individuals who have a demonstrated hypersensitivity to the drug or any of its components.
  • Nitrate therapy: Individuals who are not nitrate therapy should not be administered sildenafil citrate. Nitrates are potent vasodilators typically used in the management of cardiac conditions such as angina pectoris. Since sildenafil also a vasodilatory effect through its actions on cGMP, it can potentiate the effects of nitrates when used concurrently which may result in severe hypotension, syncope, and myocardial infarction.
  • Hepatic disease: Since sildenafil is metabolized by hepatic isozymes, hepatic diseases may lead to increased plasma levels of sildenafil and a prolongation of its effects. Care should be exercised when administering sildenafil to individuals with hepatic disease.
  • Renal disease: Similar to hepatic diseases, renal diseases may prolong the effects of sildenafil citrate due to increased plasma levels as a result of diminished renal excretion. Caution should also be exercised when administering sildenafil to individuals with renal diseases.
  • Visual abnormalities: There have been some instances of vision loss in individuals taking sildenafil citrate. The loss of vision is due to a reduction in blood flow to the optic nerve, a condition known as non-arteritic anterior ischemic optic neuropathy (NAION). Individuals with pre-existing visual disturbances may be administered sildenafil only when the benefits clearly outweigh the risks.
  • Cardiovascular disorders: Caution should be exercised when administering sildenafil to individuals with known cardiac disorders such as arrhythmias, aortic stenosis, heart failure, and myocardial infarction, among others.
Adverse Reactions / Side Effects

Toxicity is one of the adverse effects that may be experienced in individuals on sildenafil therapy. The risk of developing toxic effects is especially higher in the presence of hepatic or renal disease, or in individuals on concurrent nitrate therapy. The toxic effects typically present as visual or cardiovascular disturbances. Other adverse reactions that may occur while on sildenafil therapy are tendon rupture, exfoliative dermatitis, hearing loss, seizures, and gastritis, among others.

Storage

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture, and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Tadalafil Troches or RDTs

Dosage Strengths

Varying anywhere between 2.5 to 20mg

General Information

Tadalafil is a selective phosphodiesterase (PDE) type 5 inhibitor similar to sildenafil and vardenafil. It is administered orally for the treatment of male erectile dysfunction (ED), pulmonary arterial hypertension (PAH), benign prostatic hypertrophy (BPH), or the concurrent treatment of erectile dysfunction and BPH. Tadalafil does not inhibit prostaglandins as do some agents for treating impotence (e.g., alprostadil). Unlike sildenafil, visual disturbances have not been reported with tadalafil, which is more selective for PDE5 than for PDE6 present in the retina. The duration of action of tadalafil for the treatment of ED (up to 36 hours) appears to be longer than that of sildenafil and vardenafil. Because PDE inhibitors promote erection only in the presence of sexual stimulation, the longer duration of action of tadalafil allows for more spontaneity in sexual activity. According to ED treatment guidelines, oral phosphodiesterase type 5 inhibitors (PDE5 inhibitor) are considered first-line therapy. Tadalafil was in phase II trials for the treatment of female sexual dysfunction, however, further investigation was discontinued. FDA approval was granted November 2003 for treatment of male erectile dysfunction (ED), and in January 2008, approval was granted for once daily use without regard to timing of sexual activity. Tadalafil (Adcirca) was FDA approved for the treatment of pulmonary arterial hypertension (PAH) in May 2009. In clinical studies of patients with pulmonary arterial hypertension (PAH), tadalafil-treated patients experienced improved exercise capacity and less clinical worsening compared to placebo. In October 2011, tadalafil received FDA approval for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH) and for the concurrent treatment of erectile dysfunction and BPH.

Mechanism of Action
Pharmacokinetics
Clinical Indications

Treatment of erectile dysfunction and/or benign prostatic hypertrophy.

Contraindications/ Precautions

Your health care provider needs to know if you have any of these conditions: bleeding disorders; eye or vision problems, including retinitis pigmentosa; Peyronie’s disease, or history of priapism (painful and prolonged erection); heart disease, angina, a history of heart attack, irregular heart beats; high or low blood pressure; history of blood diseases; history of stomach bleeding; kidney disease; liver disease; stroke; an unusual or allergic reaction to tadalafil. If you notice any changes in your vision while taking this drug, call your doctor or health care professional as soon as possible. Stop using this medicine and call your healthcare provider right away if you have a loss of sight in one or both eyes. Contact your healthcare provider right away if the erection lasts longer than 4 hours or if it becomes painful. If you experience symptoms of nausea, dizziness, chest pain or arm pain upon initiation of sexual activity after taking this medicine, you should refrain from further activity and call your healthcare provider immediately. Do not drink alcohol when taking this medicine as alcohol can increase your chances of getting a headache or getting dizzy, increasing your heart rate or lowering your blood pressure. Using this medicine does not protect you or your partner against HIV infection or other sexually transmitted infections.

Tadalafil is contraindicated in patients with a known hypersensitivity to the drug or any component of the tablet.

The safety and efficacy of combinations of tadalafil with other treatments for erectile dysfunction have not been studied. Therefore, the use of such combinations is not recommended.

Because the efficacy of concurrent use of tadalafil and alpha-blockers in the treatment of benign prostatic hyperplasia (BPH) has not been adequately studied, and due to the potential vasodilatory effects of such combination treatment, tadalafil is not recommended for use with alpha-blockers when treating BPH (see Drug Interactions).

Tadalafil is contraindicated in patients who are currently on nitrate/nitrite therapy. Consistent with its known effects on the nitric oxide/cGMP pathway, tadalafil may potentiate the hypotensive effects of organic nitrates and nitrites. Patients receiving nitrates in any form are not to receive tadalafil. This includes any patient who receives intermittent nitrate therapies. It is unknown if it is safe for patients to receive nitrates once tadalafil has been administered.

Use tadalafil cautiously in patients with renal impairment. Dosing recommendations vary depending upon the severity of renal impairment, indication, and the dosing regimen being used (see Dosage in renal impairment). Tadalafil is not recommended in patients receiving the drug on a once daily basis for erectile dysfunction, benign prostatic hyperplasia, or pulmonary arterial hypertension when the creatinine clearance is less than 30 ml/min or the patient has renal failure or is receiving dialysis.

Use tadalafil with caution in patients with altered hepatic function secondary to hepatic disease and/or drug-induced inhibition. Dosage modifications are needed in patients with mild to moderate hepatic impairment (see Dosage). In patients with severe hepatic impairment, use of tadalafil is not recommended because of insufficient data. Additionally, tadalafil is metabolized by CYP3A4 in the liver. Dosage adjustments are necessary in patients taking potent CYP3A4 inhibitors such as ritonavir, ketoconazole, and itraconazole (see Dosage and Drug Interactions).

There is a degree of cardiac risk associated with sexual activity; therefore, prescribers should evaluate the cardiovascular status of their patients prior to initiating any treatment for erectile dysfunction. Tadalafil and other PDE5 inhibitors have mild systemic vasodilatory properties that may result in transient decreases in blood pressure. Health care professionals should consider whether the individual would be adversely affected by vasodilatory events. The following groups of patients with cardiac disease were excluded from clinical safety and efficacy trials for tadalafil, and, therefore, the manufacturer does not recommend the use of tadalafil in these groups until more data are available: myocardial infarction within the last 90 days; coronary artery disease resulting in unstable angina or angina occurring during sexual intercourse; NYHA Class II or greater heart failure in the last 6 months; uncontrolled cardiac arrhythmias; hypotension (< 90/50 mmHg); uncontrolled hypertension ( 170/100 mmHg); or a stroke within the last 6 months. Based on recommendations for sildenafil by the American College of Cardiology, it is recommended that tadalafil be used with caution in the following: patients with active coronary ischemia (angina) who are not taking nitrates (e.g., positive exercise test for ischemia); patients with congestive heart failure and borderline low blood pressure and borderline low volume status (hypovolemia); patients on a complicated, multidrug, antihypertensive program; and patients taking drugs that can prolong the half-life of tadalafil. Tadalafil is contraindicated in patients who are currently on nitrate/nitrite therapy. Also, patients with left ventricular outflow obstruction (e.g., aortic stenosis and idiopathic hypertrophic subaortic stenosis) or severely impaired autonomic control of blood pressure can be sensitive to the action of vasodilators, including PDE5 inhibitors. Due to the pulmonary vasodilation caused by tadalafil, patients with pulmonary veno-occlusive disease (PVOD) may experience significant worsening in cardiovascular status. Due to a lack of clinical data on administration of tadalafil to patients with veno-occlusive disease, administration of tadalafil to such patients is not recommended. The possibility of associated PVOD should be considered should signs of pulmonary edema occur when tadalafil is administered.

Prolonged erections greater than 4 hours and priapism (painful erections greater than 6 hours in duration) have been associated with PDE5 inhibitor administration. Priapism, if not treated promptly, can result in irreversible damage to the erectile tissue. Patients who have an erection lasting greater than 4 hours, whether painful or not, should seek emergency medical attention. Use tadalafil, and other agents for the treatment of erectile dysfunction, with caution in patients with penile structural abnormality (such as angulation, cavernosal fibrosis, or Peyronie’s disease), or in patients who have conditions which may predispose them to priapism (such as sickle cell disease, leukemia, multiple myeloma, polycythemia, or history of priapism).

Educate patients that tadalafil, when used for erectile dysfunction, offers no protection against sexually transmitted disease. Counsel patients about protective measures, including the prevention of transmission of human immunodeficiency virus (HIV) infection, as appropriate to the individual circumstances.

Use tadalafil cautiously in patients with pre-existing visual disturbance. Post-marketing reports of sudden vision loss have occurred with phosphodiesterase inhibitors. Vision loss is attributed to a condition known as non-arteritic anterior ischemic optic neuropathy (NAION), where blood flow is blocked to the optic nerve. Although visual disturbances have been reported rarely with tadalafil, there is no safety information on the administration of tadalafil to patients with known hereditary degenerative retinal disorders, including retinitis pigmentosa. A minority of patients with the inherited condition retinitis pigmentosa have genetic disorders of retinal phosphodiesterases. Therefore, it is recommended that tadalafil not be administered to these patients until further data are available.

Geriatric patients ( = 65 years) made up approximately 25% of patients in the primary efficacy and safety studies of tadalafil for the treatment of erectile dysfunction and 28% of patients in the clinical study of tadalafil for pulmonary arterial hypertension. In clinical trials for benign prostatic hyperplasia, geriatric patients greater than 65 years of age accounted for 40% of study participants and those 75 years of age and older accounted for 10% of study participants. No overall differences in efficacy and safety were observed between older and younger patients for these indications. No dose adjustment is warranted based on age alone. However, greater sensitivity to medications in some older individuals should be considered.

Prior to initiating treatment with tadalafil for benign prostatic hyperplasia (BPH), consideration should be given to other urological conditions that may cause similar symptoms. Prostate cancer and benign prostatic hyperplasia (BPH) cause many of the same symptoms and frequently they coexist. Prior to starting tadalafil therapy for BPH, patients should be evaluated to rule out the presence of prostate cancer.

Tadalafil is classified as FDA pregnancy risk category B. There are no adequate and well-controlled studies of tadalafil in pregnant women. According to the manufacturer, Adcirca should be used during pregnancy only if clearly needed; Tadalafil is not indicated for use in women.

Use tadalafil cautiously in patients with gastroesophageal reflux disease (GERD) or hiatal hernia associated with reflux esophagitis. Like sildenafil, tadalafil can possibly decrease the tone of the lower esophageal sphincter and inhibit esophageal motility. Additionally, tadalafil is an inhibitor of phosphodiesterase type 5 (PDE5), which is found in platelets. Some data indicate that tadalafil does not potentiate the increase in bleeding time caused by aspirin. However, the manufacturer recommends caution when administering tadalafil to patients with significant active peptic ulcer disease (PUD) since the effects of the drug in this patient population have not been formally studied.

It is not known if tadalafil is excreted in breast milk. Adcirca should be used with caution in breast-feeding women; Tadalafil is not indicated for use in women. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

Tadalafil is an inhibitor of phosphodiesterase type 5 (PDE5), which is found in platelets. Some data indicate that tadalafil does not potentiate the increase in bleeding time caused by aspirin. However, the manufacturer recommends caution when administering tadalafil to patients with significant hematological disease (e.g., bleeding disorders) since the effects of the drug in this patient population have not been formally studied.

This list may not include all possible contraindications.

Interactions

Possible interactions include certain drugs for high blood pressure; certain drugs for the treatment of HIV infection or AIDS; certain drugs used for fungal or yeast infections, like fluconazole, ketoconazole, and voriconazole; certain drugs used for seizures like carbamazepine, phenytoin, and phenobarbital; grapefruit juice; macrolide antibiotics; medicines for prostate problems; rifabutin, rifampin or rifapentine. This list may not describe all possible interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.

The safety and efficacy of tadalafil administered concurrently with any other phosphodiesterase inhibitors (e.g., vardenafil and sildenafil) has not been studied. The manufacturer of tadalafil recommends to avoid the use of tadalafil with any other phosphodiesterase inhibitors.

Tadalafil has been shown to potentiate the hypotensive effects of nitrates. This interaction is consistent with tadalafil’s known effects on the nitric oxide/cGMP pathway. Deaths have been reported in men who were using a similar agent, sildenafil, while taking nitrate or nitrite therapy for angina. Tadalafil administration to patients who are concurrently using organic nitrates or nitrites in any form is contraindicated. It should be noted that during once daily administration of tadalafil, the presence of continuous plasma tadalafil concentrations may change the potential for interactions with other medications such as nitrates.

Concurrent use of phosphodiesterase (PDE5) inhibitors and alpha-blockers may lead to symptomatic hypotension in some patients. Tadalafil, other PDE5 inhibitors, and alpha-blockers are systemic vasodilators which can lower blood pressure. If vasodilators are used in combination, an additive effect on blood pressure is anticipated. Because the efficacy of concurrent use of tadalafil and alpha-blockers in the treatment of benign prostatic hyperplasia (BPH) has not been adequately studied, and due to the potential vasodilatory effects of combination treatment, tadalafil is not recommended for use with alpha-blockers when treating BPH. Patients receiving alpha-blocker therapy for BPH prior to tadalafil initiation should discontinue the alpha-blocker at least one day prior to beginning tadalafil treatment. When tadalafil is co-administered with an alpha-blocker in a patient receiving tadalafil for erectile dysfunction (ED), the patient should be stable on alpha-blocker therapy before starting PDE5 inhibitor therapy. If hemodynamic instability is evident on alpha-blocker therapy alone, there is an increased risk of symptomatic hypotension with concomitant PDE5 inhibitor therapy. For patients with ED who are stable on alpha-blocker therapy, PDE5 inhibitors should be started at the lowest recommended dose. If a patient with ED is currently receiving an optimized dose of a PDE5 inhibitor, alpha-blocker therapy should be initiated at the lowest dose. Stepwise increases in the alpha-blocker dose may be associated with further hypotension when taking a PDE5 inhibitor. Other variables, such as intravascular volume depletion and other antihypertensive drugs, may affect the safety of concomitant use of PDE5 inhibitors and alpha-blockers. Studies have been conducted to determine the effects of tadalafil on the potentiation of the blood-pressure-lowering effects of the alpha-blockers doxazosin and tamsulosin. When tadalafil 20 mg was administered to healthy subjects taking doxazosin (8 mg daily), an alpha-1-blocker, there was significant augmentation of the hypotensive effects of doxazosin. In contrast, coadministration of a single 20-mg dose of tadalafil to healthy subjects taking either 0.4 mg tamsulosin once-daily or 10 mg alfuzosin once daily, both of which are selective alpha-1A-blockers, resulted in no significant decreases in blood pressure. It should be noted that during once daily administration of tadalafil for ED or other indications, the presence of continuous plasma tadalafil concentrations may change the potential for interactions with medications such as alpha-blockers.

Particular caution should be used when prescribing phosphodiesterase type 5 (PDE5) inhibitors, such as tadalafil, to patients receiving certain protease inhibitors such as atazanavir, darunavir, ritonavir, amprenavir, fosamprenavir, indinavir, tipranavir, nelfinavir, or saquinavir.

Tadalafil is metabolized predominantly by CYP3A4. Efavirenz induces CYP3A4 and may decrease serum concentrations of drugs metabolized by this enzyme. Similar precautions apply to combination products containing efavirenz such as efavirenz; emtricitabine; tenofovir.

Particular caution should be used when prescribing phosphodiesterase type 5 (PDE5) inhibitors to patients receiving delavirdine. Coadministration of delavirdine with these drugs is expected to substantially increase their plasma concentrations and may result in increased associated adverse events including hypotension, syncope, visual changes, and prolonged erection. The manufacturer of tadalafil recommends that in patients receiving concomitant potent CYP3A4 inhibitors, the ‘as needed’ dose for erectile dysfunction should not exceed 10 mg within a 72 hour time period, and the ‘once-daily’ dose for erectile dysfunction or benign prostatic hyperplasia should not exceed 2.5 mg (see Dosage). It should be noted that during once daily administration of tadalafil, the presence of continuous plasma tadalafil concentrations may change the potential for interactions with potent inhibitors of CYP3A4. When used for pulmonary arterial hypertension, tadalafil should not be co-administered with potent CYP3A inhibitors.

Tadalafil is metabolized predominantly by CYP3A4. Inhibitors of CYP3A4 may reduce tadalafil clearance. In theory, CYP3A4 inhibitors which may interact with tadalafil include amiodarone, cimetidine, clarithomycin or products containing clarithomycin, conivaptan, diltiazem, erythromycin or products containing erythromycin, fluconazole, fluoxetine or combination products with fluoxetine, fluvoxamine, ketoconazole, imatinib, STI-571, itraconazole, mibefradil, nefazodone, quinidine or combination products with quinidine, troleandomycin, voriconazole, zafirlukast, and zileuton. Increased systemic exposure to tadalafil may result in increased associated adverse events including hypotension, syncope, visual changes, and prolonged erection. The manufacturer of tadalafil recommends that in patients receiving concomitant potent CYP3A4 inhibitors, the ‘as needed’ dose for erectile dysfunction should not exceed 10 mg within a 72 hour time period, and the ‘once-daily’ dose for erectile dysfunction or benign prostatic hyperplasia should not exceed 2.5 mg (see Dosage).

Etravirine is an inducer of CYP3A4; coadministration may result in decreased tadalafil concentrations. Dosage adjustments may be needed based on clinical efficacy.

Tadalafil is metabolized via the CYP3A4 isozyme. Grapefruit juice (food) has been reported to decrease the metabolism of drugs metabolized via this enzyme. Grapefruit juice contains a furano-coumarin compound, 6,7—dihydroxybergamottin that inhibits CYP3A4 in enterocytes in the GI tract. Tadalafil levels may increase; it is possible that tadalafil-induced side effects could also be increased in some individuals.

Although specific interaction studies have not been performed, CYP3A4 inducers such as barbiturates, bosentan, carbamazepine, dexamethasone, phenytoin or fosphenytoin, nevirapine, rifabutin, troglitazone, rifampin, or isoniazid would likely decrease tadalafil AUC since tadalafil is primarily metabolized by CYP3A4. Patients should be monitored for loss of efficacy of tadalafil during concurrent use

Mifepristone, RU-486 inhibits CYP3A4 in vitro. Coadministration of mifepristone may lead to an increase in serum levels of drugs metabolized via CYP3A4, such as tadalafil. Due to the slow elimination of mifepristone from the body, such interactions may be observed for a prolonged period after mifepristone administration.

The combination of tadalafil and substantial consumption of ethanol can increase the potential for orthostatic signs and symptoms, including increase in heart rate, decrease in standing blood pressure, dizziness, and headache. Ethanol and PDE5 inhibitors, including tadalafil, are mild systemic vasodilators. As reported by the manufacturer, the interaction of tadalafil with ethanol was evaluated in 3 clinical pharmacology studies. In 2 of the studies, ethanol was administered at a dose of 0.7 g/kg, which is equivalent to approximately 6 ounces of 80-proof vodka in an 80-kg male, and tadalafil was administered at a dose of 10 mg in 1 study and 20 mg in another. In both of these studies, all patients consumed the entire ethanol dose within 10 minutes of starting. In one of these studies, blood ethanol concentrations of 0.08% were confirmed. In these two studies, more patients had clinically significant decreases in blood pressure on the combination of tadalafil and ethanol as compared to ethanol alone. Some subjects reported postural dizziness, and orthostatic hypotension was observed in some subjects. When tadalafil 20 mg was administered with a lower dose of ethanol (0.6 g/kg, which is equivalent to approximately 4 ounces of 80-proof vodka, administered in less than 10 minutes), orthostatic hypotension was not observed, dizziness occurred with similar frequency to ethanol alone, and hypotensive effects of ethanol were not potentiated. Tadalafil did not affect ethanol plasma concentrations and ethanol did not affect tadalafil plasma concentrations. It should be noted that during once daily administration of tadalafil, the presence of continuous plasma tadalafil concentrations may change the potential for an interaction when a substantial amount of ethanol is consumed.

Nilotinib is a competitive inhibitor of CYP3A4, and tadalafil is a CYP3A4 substrate. Concurrent administration of the CYP3A4 substrate midazolam with nilotinib increased midazolam exposure by 30%. Caution should be exercised when coadministering nilotinib with CYP3A4 substrates, especially substrates with a narrow therapeutic index.

Sapropterin acts as a cofactor in the synthesis of nitric oxide and may cause vasorelaxation. Caution should be exercised when administering sapropterin in combination with drugs that affect nitric oxide-mediated vasorelaxation such as tadalafil. When given together these agents may produce an additive reduction in blood pressure. The combination of sapropterin and a phosphodiesterase inhibitor did not significantly reduce blood pressure when administered concomitantly in animal studies. The additive effect of these agents has not studied been in humans.

Nifedipine can have additive hypotensive effects when administered with phosphodiesterase inhibitors (PDE 5 inhibitors). The patient should be monitored carefully and the dosage should be adjusted based on clinical response. Vardenafil (20 mg) did not affect the AUC or Cmax of slow-release nifedipine (30 or 60 mg daily), which is metabolized by CYP3A4. Nifedipine did not alter plasma levels of vardenafil. In patients whose hypertension was controlled with nifedipine, vardenafil produced mean additional supine systolic/diastolic blood pressure reductions of 6/5 mm Hg compared to placebo.

Potent inhibitors of CYP3A4, such as telithromycin, may reduce tadalafil clearance; tadalafil is metabolized predominantly by CYP3A4. Increased systemic exposure to tadalafil may result in increased associated adverse events including hypotension, syncope, visual changes, and prolonged erection. The manufacturer of tadalafil recommends that in patients receiving concomitant potent CYP3A4 inhibitors, the ‘as needed’ dose for erectile dysfunction should not exceed 10 mg within a 72 hour time period, and the ‘once-daily’ dose for erectile dysfunction or benign prostatic hyperplasia should not exceed 2.5 mg (see Dosage). It should be noted that during once daily administration of tadalafil, the presence of continuous plasma tadalafil concentrations may change the potential for interactions with potent inhibitors of CYP3A4. When used for pulmonary arterial hypertension, tadalafil should not be co-administered with potent CYP3A inhibitors.

Tadalafil, when used for pulmonary arterial hypertension (PAH), is contraindicated with telaprevir. Coadministration of telaprevir with phosphodiesterase type 5 (PDE5) inhibitors is expected to substantially increase their plasma concentrations and may result in increased associated adverse events including hypotension, syncope, visual changes, and prolonged erection. Telaprevir can be used cautiously with tadalafil for erectile dysfunction; use tadalafil at a reduced dose of 10 mg no more frequently than every 72 hours with increased monitoring for adverse reactions.

Studies have shown that tadalafil does not inhibit or induce cytochrome P450 (CYP) enzymes 1A2, 3A4, 2C9, 2C19, 2D6, and 2E1. Therefore, tadalafil is not expected to cause clinically significant inhibition or induction of the clearance of drugs metabolized by CYP enzymes. When tadalafil was administered with theophylline, a CYP1A2 substrate, a small augmentation (3 beats per minute) of the increase in heart rate associated with theophylline was observed. However, tadalafil had no clinically significant effect on the pharmacokinetics of theophylline. Tadalafil had no clinically significant on the AUCs of the CYP3A4 substrates midazolam or lovastatin. Additionally, no clinically significant effect was observed on S-warfarin and R-warfarin AUC when coadministered with tadalafil; prothrombin time changes induced by warfarin were not affected by tadalafil.

Tadalafil and other PDE5 inhibitors are mild systemic vasodilators. Studies were conducted to assess the interaction of tadalafil 10 mg and sustained-release metoprolol (25 to 200 mg daily), bendroflumethiazide (2.5 mg daily), or enalapril (10 to 20 mg daily). Following dosing of tadalafil with metoprolol, the mean reduction in supine systolic/diastolic blood pressure was 5/3 mmHg, compared to placebo. After dosing of tadalafil with bendroflumethiazide, the mean reduction in supine systolic/diastolic blood pressure was 6/4 mmHg, compared to placebo. Following dosing of tadalafil with enalapril, the mean reduction in supine systolic/diastolic blood pressure was 4/1 mmHg, compared to placebo.

Tadalafil and other PDE5 inhibitors are mild systemic vasodilators. A study was conducted to assess the interaction of tadalafil 20 mg and angiotensin II receptor blockers. Study subjects were taking any marketed angiotensin II receptor blocker, either alone, as a component of a combination product, or as part of a multiple antihypertensive regimen. Following dosing, ambulatory measurements of blood pressure revealed differences between tadalafil and placebo of 8/4 mmHg in systolic/diastolic blood pressure.

The increase in pH associated with nizatidine administration had no significant effect on tadalafil pharmacokinetics. Additionally, simultaneous administration of an antacid (magnesium hydroxide; aluminum hydroxide) and tadalafil reduced the apparent rate of absorption of tadalafil without altering the AUC of tadalafil.

Adverse Reactions / Side Effects

Back pain; dizziness; flushing; headache; indigestion; muscle aches; nausea; stuffy or runny nose. This list may not describe all possible side effects. Call your healthcare provider immediate if you experience signs of an allergic reaction like skin rash, itching or hives, swelling of the face, lips, or tongue; breathing problems; changes in hearing; changes in vision; chest pain; erection lasting more than 4 hours; fast, irregular heartbeat; seizures.

Adverse reactions to tadalafil for the treatment of erectile dysfunction (ED) were evaluated based on worldwide clinical trials of tadalafil involving over 5700 men (mean age 59, range 22 to 88 years). Over 100 patients were treated for 1 year or longer and over 1300 were treated for 6 months or more. During placebo-controlled trials, the discontinuation rate for patients treated with tadalafil (10 or 20 mg) was 3.1% compared to 1.4% in placebo-treated patients. In the treatment of patients with elevated pulmonary arterial pressures (PAH), adverse reactions to tadalafil were evaluated based on worldwide clinical trials involving 398 patients; 311 patients were treated for at least 182 days and 251 patients were treated for at least 360 days. During placebo-controlled trials, the overall rate of discontinuation due to an adverse event was higher in placebo-treated patients than in patients treated with tadalafil 40 mg/day (15% vs. 9%, respectively). In addition, the rate of discontinuation due to an adverse event not related to worsening of PAH was 5% in placebo-treated patients compared to 4% in patients treated with tadalafil 40 mg/day. During short-term clinical trials in patients with benign prostatic hyperplasia (BPH) or both BPH and erectile dysfunction, the rate of discontinuation due to an adverse effect was 3.6% of tadalafil-treated patients versus 1.6% of placebo-treated patients, and the mean age of study participants was 63 years.

During clinical trials, hypotension was reported in < 2% and hypertension was reported in 1—3% of all tadalafil recipients. The risk for serious hypotension is augmented by the use of nitrates; therefore, the use of tadalafil in patients receiving nitrate therapy is contraindicated. Other cardiac effects reported in less than 2% of patients during clinical trials include angina, chest pain (unspecified), myocardial infarction, orthostatic hypotension, palpitations, syncope, and sinus tachycardia. Sudden cardiac death, stroke, chest pain, palpitations, and sinus tachycardia have all been noted in post-marketing experience with tadalafil. Most of the affected patients had pre-existing cardiovascular risk factors. Many of these events occurred during or shortly after sexual activity. In some cases, the symptoms occurred hours to days after the use of tadalafil and sexual activity. The effects of tadalafil on cardiac function, hemodynamics, and exercise tolerance were investigated in a single clinical pharmacology study. In this blinded crossover trial, 23 subjects with stable coronary artery disease and evidence of exercise-induced cardiac ischemia were enrolled. The primary endpoint was time to cardiac ischemia. The mean difference in total exercise time was 3 seconds (tadalafil 10 mg minus placebo), which represented no clinically meaningful difference. Further statistical analysis demonstrated that tadalafil was non-inferior to placebo with respect to time to ischemia. Of note, in this study, in some subjects who received tadalafil followed by sublingual nitroglycerin in the post-exercise period, clinically significant reductions in blood pressure (hypotension) were observed, consistent with the augmentation by tadalafil of the blood-pressure-lowering effects of nitrates. In addition, tadalafil (20 mg) had no significant effect on supine or standing systolic and diastolic blood pressure in healthy male subjects compared to placebo; there was also no significant effect on heart rate.

The effect of a single 100-mg dose of tadalafil on QT prolongation was evaluated at the time of peak tadalafil concentration in a randomized, double-blinded, placebo, and active (intravenous ibutilide)-controlled crossover study in 90 healthy males aged 18 to 53 years. The mean change in QTc for tadalafil, relative to placebo, was 2.8 milliseconds using Individual QT correction and 3.5 milliseconds using Fridericia QT correction. A 100-mg dose of tadalafil (5 times the highest recommended dose) was chosen because this dose yields exposures covering those observed upon coadministration of tadalafil with potent CYP3A4 inhibitors or those observed in renal impairment. In this study, the mean increase in heart rate associated with a 100-mg dose of tadalafil compared to placebo was 3.1 beats per minute.

During clinical trials, adverse reactions occurring = 2% of patients with erectile dysfunction, = 9% of patients with pulmonary arterial hypertension, and more frequently in the tadalafil-treated groups than placebo included back pain (2—12%), myalgia (1—14%), and pain in limb (1—3%). Adverse musculoskeletal reactions reported in < 2% of tadalafil recipients included arthralgia and neck pain. During short-term clinical trials in patients with benign prostatic hyperplasia (BPH) or both BPH and erectile dysfunction, the following musculoskeletal effects occurred in at least 1% of tadalafil-treated patients and more frequently than in placebo-treated patients: back pain (2.4% vs 1.4%), extremity musculoskeletal pain (1.4% vs 0%), and myalgia (1.2% vs 0.3%). Adverse musculoskeletal effects reported in less than 1% of patients included arthralgia and muscle spasms. Myalgia lead to treatment discontinuation in at least 2 patients during clinical trials for BPH or BPH/erectile dysfunction. In tadalafil clinical pharmacology trials, back pain or myalgia generally occurred 12 to 24 hours after dosing and typically resolved within 48 hours. The back pain/myalgia was described as diffuse bilateral lower lumbar, gluteal, thigh, or thoracolumbar muscular discomfort and was exacerbated by recumbency. Generally, pain was reported as mild or moderate in severity and resolved without medical treatment; severe back pain was reported infrequently. When medical treatment was needed, acetaminophen or NSAIDs were generally effective; however, in a small number of patients who required treatment, a mild narcotic (e.g., codeine) was used. Overall, approximately 0.5% of all tadalafil-treated patients discontinued treatment due to back pain/myalgia. Diagnostic testing, including measures for inflammation, muscle injury, or renal damage revealed no medically significant underlying pathology.

Headache occurred in 3—15% of patients during erectile dysfunction clinical trials and in 32—42% of patients during pulmonary arterial hypertension clinical trials; headache was reported more frequently in the tadalafil-treated groups than placebo. During short-term clinical trials in patients with benign prostatic hyperplasia (BPH) or both BPH and erectile dysfunction, the following centrally-mediated effects occurred in at least 1% of tadalafil-treated patients and more frequently than in placebo-treated patients: headache (4.1% vs 2.3%) and dizziness (1% vs 0.5%). Headache lead to treatment discontinuation in at least 2 patients during clinical trials for BPH or BPH/erectile dysfunction. Adverse reactions reported in < 2% of tadalafil recipients during clinical trials and affecting the nervous system included hypoesthesia, insomnia, dizziness, paresthesias, vertigo, and somnolence or drowsiness. Migraine, transient global amnesia, seizures, and seizure recurrence have been reported during post-marketing use of tadalafil; due to the voluntary nature of the reports, the frequency of post-marketing adverse reactions is unknown and causality to the drug has not been established.

Dyspepsia occurred in 1—10% of patients during erectile dysfunction (ED) clinical trials and in 10—13% of patients in pulmonary arterial hypertension clinical trials; dyspepsia was reported more frequently in the tadalafil-treated groups than placebo. Other gastrointestinal/digestive adverse reactions reported by tadalafil recipients and more frequently than placebo included nausea (1—11%), viral gastroenteritis (3—5%), gastroesophageal reflux (1—3%), abdominal pain (1—2%), and diarrhea (1—2%). During short-term clinical trials in patients with benign prostatic hyperplasia (BPH) or both BPH and erectile dysfunction, the following gastrointestinal effects occurred in at least 1% of tadalafil-treated patients and more frequently than in placebo-treated patients: dyspepsia (2.4% vs 0.2%) and diarrhea (1.4% vs 1%). Adverse GI reactions reported in less than 1% of patients included gastroesophageal reflux disease, upper abdominal pain, nausea, and vomiting. Upper abdominal pain lead to treatment discontinuation in at least 2 patients during clinical trials for BPH or BPH/erectile dysfunction. Dysphagia, elevated hepatic enzymes, esophagitis, gastritis, vomiting, increased GGTP, loose stools, upper abdominal pain, hemorrhoidal hemorrhage, rectal hemorrhage, and xerostomia were reported in < 2% of patients treated with tadalafil during clinical trials.

Nasal congestion occurred in 2—4% of patients during erectile dysfunction clinical trials and in 9% of patients during pulmonary arterial hypertension clinical trials; nasal congestion was reported more frequently in the tadalafil-treated groups than placebo. In addition, pharyngitis (reported as nasopharyngitis, 1—13%), upper and lower respiratory tract infection (3—13%), influenza (2—5%), cough (2—4%), bronchitis (2%), and urinary tract infection (2%) were reported in tadalafil-treated patients during clinical trials. During short-term clinical trials in patients with benign prostatic hyperplasia (BPH) or both BPH and erectile dysfunction, nasopharyngitis occurred more frequently in tadalafil-treated patients (2.1%) than placebo-treated patients (1.6%). Dyspnea, epistaxis, and pharyngitis were reported in less than 2% of patients in clinical trials.

Flushing occurred in 1—3% of patients during erectile dysfunction clinical trials and in 6—13% of patients during pulmonary arterial hypertension clinical trials; flushing was reported more frequently in the tadalafil-treated groups than those groups receiving placebo.

During clinical trials, blepharedema or swelling of the eyelids, conjunctivitis, increased lacrimation, and ocular pain were reported in < 2% of tadalafil recipients.

Single oral doses of phosphodiesterase inhibitors have demonstrated transient dose-related impairment of color discrimination (blue/green), using the Farnsworth-Munsell 100-hue test, with peak effects near the time of peak plasma levels. This finding is consistent with the inhibition of PDE6, which is involved in phototransduction in the retina. In a study to assess the effects of a single dose of tadalafil 40 mg on vision (n=59), no effects were observed on visual acuity, intraocular pressure, or pupillometry. Across all clinical studies with tadalafil, reports of changes in color vision were rare (< 0.1% of patients). Post-marketing reports have included cases of visual impairment such as retinal vein occlusion and visual field defects. Non-arteritic anterior ischemic optic neuropathy (NAION) has also been reported rarely in patients using phosphodiesterase type 5 (PDE5) inhibitors. It is thought that the vasoconstrictive effect of phosphodiesterase inhibitors may decrease blood flow to the optic nerve, especially in patients with a low cup to disk ratio. Symptoms, such as blurred vision (< 2%) and loss of visual field in one or both eyes, are usually reported within 24 hours of use. Most, but not all, of these patients who reported this adverse effect had underlying anatomic or vascular risk factors for development of NAION. These risk factors include, but are not limited to: low cup to disc ratio (‘crowded disc’), age over 50 years, diabetes, high blood pressure, coronary artery disease, hyperlipidemia, and smoking. Additionally, two patients had retinal detachment and one patient had hypoplastic optic neuropathy. It is not yet possible to determine if these adverse events are related directly to the use of PDE5 inhibitors, to the patient’s underlying vascular risk factors or anatomical defects, to a combination of these factors, or to other factors.

Adverse reactions affecting hearing or otic special senses and occurring in < 2% of patients in controlled clinical trials of tadalafil include hearing loss and tinnitus. In addition, 29 reports of sudden changes in hearing including hearing loss or decrease in hearing, usually in 1 ear only, have been reported to the FDA during post-marketing surveillance in patients taking sildenafil, tadalafil, or vardenafil; the reports are associated with a strong temporal relationship to the dosing of these agents. Many times, the hearing changes are accompanied by vestibular effects including dizziness, tinnitus, and vertigo. Follow-up has been limited in many of the reports; however, in approximately one-third of the patients, the hearing loss was temporary. Concomitant medical conditions or patient factors may play a role, although risk factors for the onset of sudden hearing loss have not been identified. Patients should be instructed to promptly contact their physician if they experience changes in hearing.

There have been rare reports of prolonged erections greater than 4 hours and priapism (painful erections greater than 6 hours in duration) for PDE5 inhibitors, such as tadalafil. Priapism, if not treated promptly, can result in irreversible damage to the erectile tissue. Patients who have an erection lasting greater than 4 hours, whether painful or not, should seek emergency medical attention. During clinical trial evaluation of tadalafil, genitourinary effects including increased erection, spontaneous penile erection, and renal impairment (unspecified) were reported in less than 2% of study patients receiving the drug.

During clinical trial evaluation of tadalafil, the following general adverse events were reported in less than 2% of patients receiving tadalafil: asthenia, facial edema, fatigue, and pain (unspecified).

During clinical trial evaluation of tadalafil, the following dermatologic effects were reported in less than 2% of study patients: pruritus, rash (unspecified), and hyperhidrosis. Stevens-Johnson syndrome, exfoliative dermatitis, and urticaria have all been noted in post-marketing experience with tadalafil. Due to the uncontrolled and voluntary nature of post-marketing reports, neither the frequency nor a definitive causal relationship to tadalafil can be established.

This list may not include all possible adverse reactions or side effects. Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, a swollen painful area/areas on the leg.

Storage

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Sexual Health For Women

Vaginal Soothing Cream

Dosage Strengths

Amitriptyline HCl / Baclofen / Gabapentin 2/2/2% 30 mL 

General Information

Amitriptyline HCL / Baclofen / Gabapentin Cream is a topical or intravaginal therapy used to treat symptoms related to vulvodynia and Provoked Vestibulodynia. These conditions cause vulvar discomfort, usually burning pain, and dyspareunia, in the absence of any specific cause. Vestibulodynia can have a profound effect on women’s sexuality and psychological well-being.

 

Amitriptyline

 

Amitriptyline is a tertiary amine tricyclic antidepressant (TCA) that is metabolized to an active metabolite, nortriptyline. Tertiary amines are generally more sedating and have greater anticholinergic effects than secondary amines. Amitriptyline is also related to the skeletal muscle relaxant cyclobenzaprine, although amitriptyline is not believed to possess muscle-relaxant properties. Amitriptyline is FDA-approved for the treatment of adults with major depressive disorder (MDD). Clinically, amitriptyline is also used to treat neuropathic pain and other conditions.

 

Baclofen

 

Baclofen is an oral skeletal muscle relaxant. It is a structural analog of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Clinically, baclofen is used to treat spasticity and improve mobility in patients with multiple sclerosis and other spinal cord lesions by decreasing the number and severity of spasms and relieving associated pain, clonus, and muscle rigidity.

 

Gabapentin

 

Gabapentin is an analog of gamma-aminobutyric acid (GABA) that has GABA agonist activity. Its unique pharmacokinetic properties make it especially useful in certain patients. Gabapentin possesses high lipid solubility, is not metabolized by the liver, has no protein binding, and is devoid of enzyme induction-related drug interactions. Originally developed as an anticonvulsant, gabapentin has been shown to be effective as adjunct therapy in the treatment of partial seizures with or without secondary generalized tonic-clonic seizures. Efficacy in the treatment of painful neuropathies has also been demonstrated. Investigational uses include monotherapy of refractory partial seizure disorders, treatment of spasticity in multiple sclerosis, and tremor. In addition, gabapentin appears to be effective in reducing hot flashes in menopausal women or women with breast cancer.

 

Topical gabapentin in the treatment of localized and generalized vulvodynia

 

Participants: 150 patients presenting with entry dyspareunia
Administration: Topical (local)
Dosage: 2% Cream
Conclusion: 80% of respondents demonstrated at least a 50% improvement in pain scores. Topical gabapentin seems to be well-tolerated and associated with significant pain relief in women with vulvodynia.

 

Use of amitriptyline cream in the management of entry dyspareunia due to provoked vestibulodynia

 

Participants: 35 women
Administration: Topical (local)
Dosage: 2% Cream
Conclusion: Topical amitriptyline cream should be considered for first-line treatment in the management of patients with provoked vestibulodynia causing entry dyspareunia. The response rate is reasonable (56%), and it eliminates the problems with systemic administration, namely, drowsiness and the difficulty patients have in accepting antidepressant medication for their condition.

 

Topical Amitriptyline-Baclofen Cream for the Treatment of Provoked Vestibulodynia

 

Participants: 38 women
Administration: Topical (local)
Dosage: 2% Baclofen & 2% Amitriptyline Cream
Conclusion: 71% response rate in women with refractory symptoms and the overall tolerability of treatment.

Pharmacokinetics
Interactions

Amitriptyline Hydrochloride / Baclofen / Gabapentin Vaginal Cream acts synergistically via three distinct pharmacologically active compounds and each has its own list of compounds it interacts with. Interactions resulting from the combination of these compounds have not been studied and may include more than the sum of all compounds. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.

Contraindications/ Precautions

Amitriptyline

 

Amitriptyline is contraindicated in patients with a hypersensitivity to amitriptyline or any of its inactive ingredients. Patients with a hypersensitivity to amitriptyline may experience a tricyclic antidepressant hypersensitivity reaction to other tricyclics. In some case reports, cross-allergenicity did not occur in patients who experienced a rash from the primary tricyclic and were switched to an alternate tricyclic. However, because the data are too limited to be conclusive, it is generally advisable to substitute with an antidepressant from another class in patients with a known hypersensitivity to amitriptyline. When considering use of an alternate tricyclic, it is prudent to avoid other cyclic compounds if the patient has experienced a severe or life-threatening reaction to the primary agent. Cross-sensitivity is possible in patients with a carbamazepine hypersensitivity. The manufacturer of carbamazepine contraindicates use in patients with a hypersensitivity to tricyclic compounds. The potential for cross-reactivity between tricyclics and other structurally similar compounds such as cyclobenzaprine or tetracyclic antidepressants (e.g., maprotiline, amoxapine) has not been established.

 

Hyperpyretic crises, severe convulsions, and deaths have occurred in patients receiving tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) simultaneously; use with MAOI therapy is contraindicated. When it is desired to replace MAOI therapy with amitriptyline, a minimum of 14 days should be allowed to elapse after the MAOI is discontinued. Amitriptyline should then be initiated cautiously with a gradual increase in dosage until optimum response is achieved.

 

Amitriptyline is contraindicated in patients who are in the acute recovery phase following acute myocardial infarction; use of amitriptyline could cause sudden death. Amitriptyline may cause orthostatic hypotension, particularly in the initial dosing titration. Use tricyclic antidepressants (TCAs) with caution and with close monitoring in patients with any cardiac disease (e.g., heart failure, history of myocardial infarction, congenital heart disease). TCAs, including amitriptyline, particularly when given in high doses, have been reported to produce arrhythmias, sinus tachycardia, and prolongation of the conduction time. Myocardial infarction and stroke have been reported with drugs of this class. Although the risk of cardiovascular adverse events is higher after acute overdose, patients with cardiovascular disease should be closely monitored via ECGs and clinical exams. TCAs should not be given to patients with QT prolongation. Use amitriptyline with caution in patients with conditions that may increase the risk of QT prolongation including cardiac arrhythmias, congenital long QT syndrome, heart failure, bradycardia, myocardial infarction, hypertension, coronary artery disease, hypomagnesemia, hypokalemia, hypocalcemia, or in patients receiving medications known to prolong the QT interval or cause electrolyte imbalances. Females, elderly patients, patients with diabetes, thyroid impairment, malnutrition, a history of alcohol abuse, or hepatic impairment may also be at increased risk for QT prolongation. Rarely, TCAs are used in pediatric patients for the treatment of attention-deficit hyperactivity disorder (ADHD). There have been reports of sudden death in pediatric patients treated with TCAs that were not associated with overdoses. Although cardiac monitoring is recommended, it is unclear whether monitoring can prevent a sudden death event. The American Heart Association recommends conducting a detailed patient and family history and physical examination prior to initiating ADHD pharmacologic treatment, and obtaining a baseline ECG is a reasonable addition to the initial evaluation. Once the medication is started, a repeat ECG may be helpful if the original ECG was obtained before the child was 12 years old, if cardiac symptoms develop, or there is a change in family history. If a child or adolescent has any significant findings on physical examination, ECG, or family history, a pediatric cardiologist should be consulted before the medication is initiated.

 

Amitriptyline should be used with caution in children with a known family history of heart disease or who are taking medications that cause QT prolongation. QTc interval prolongation, tachycardias, and other side effects have been reported in children who have taken tricyclic antidepressants (TCAs); there are rare reports of deaths due to cardiovascular side effects. Routine cardiovascular monitoring has been suggested for children receiving TCAs due to the potential of these agents to produce adverse cardiac effects.

 

All effective antidepressants can transform depression into mania or hypomania in predisposed individuals. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. If a patient develops manic symptoms, amitriptyline should be withheld and appropriate therapy initiated to treat the manic symptoms. Additionally, depression may be the presenting symptom of a mixed/manic episode of bipolar disorder. Patients should be adequately screened for bipolar disorder prior to initiating an antidepressant. Such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. Also use TCAs with caution in patients with psychotic disorders (e.g., schizophrenia). Psychotic symptoms may be precipitated in some individuals. Patients with depression or comorbid depression in the setting of other psychiatric illness being treated with antidepressants should be observed for clinical worsening and suicidality, especially during the initial few months of a course of drug therapy, or at times of dose changes. Caregivers should be advised to closely observe the patient on a daily basis and to communicate immediately with the prescriber the emergence of unusual changes in behavior or suicidality. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. It should be noted that amitriptyline is not approved for use in treating bipolar depression.

 

Amitriptyline can induce significant sedation, particularly during the initiation of treatment. Amitriptyline may enhance the response to alcohol, the effects of barbiturates, and increase sedation or central nervous system (CNS) effects during coadministration with other CNS depressants. Patients should use caution with ethanol ingestion. In patients who may use alcohol excessively (e.g., alcoholism), the potentiation of CNS effects may increase the danger inherent in any suicide attempt or overdosage. Patients should use caution when driving or operating machinery until they are aware of the effects of the medication.

 

Amitriptyline should be used with extreme caution in patients with a preexisting seizure disorder because tricyclic antidepressants (TCAs) can lower the seizure threshold. If seizures occur during TCA therapy, the TCA should be discontinued. Concurrent administration of amitriptyline and electroconvulsive therapy (ECT) may increase the hazards associated with such therapy. Such treatment should be limited to patients for whom it is essential.

 

Tricyclic antidepressants (TCAs), such as amitriptyline, should be used with caution in patients with hepatic disease. Metabolism of tricyclic antidepressants may be altered in patients with hepatic impairment. Rarely, TCAs have caused hepatitis and jaundice, which are reversible on discontinuation. Liver function tests (LFTs) should be performed if symptoms occur and the drug discontinued if there is persistent elevation of enzymes.

 

Amitriptyline should be discontinued several days before elective surgery because of the risk of adverse reactions during surgery, including increased sensitivity to catecholamines and potential cardiovascular reactions.

 

The anticholinergic effects of tricyclic antidepressants (TCAs) limit the use of the drugs in certain patients. The anticholinergic effects of amitriptyline may be significant and are additive with other anticholinergic medications. These actions can decrease GI motility, causing constipation and in some cases, paralytic ileus. Patients who have risk factors for urinary retention, such as those with benign prostatic hypertrophy, should also be treated with caution. Anticholinergic effects appear most frequently and cause the greatest morbidity in elderly patients.

 

Caution is recommended when prescribing amitriptyline to patients with closed-angle glaucoma. The pupillary dilation that can occur with antidepressants may precipitate a closed-angle glaucoma attack in patients with anatomically narrow angles who do not have a patent iridectomy. An acute attack of closed-angle glaucoma is considered a medical emergency because the increased intraocular pressure is rapid and severe, and may quickly result in blindness if left untreated 

 

The anticholinergic effects of amitriptyline may increase lens discomfort for wearers of contact lenses. Mydriasis, disturbance of accommodation, and dry eyes may contribute to blurred vision and lens intolerance. The use of lubricating drops may be necessary.

 

Patients who develop a continued fever and a sore throat during therapy with a tricyclic antidepressant (TCA) should have leukocyte and differential blood counts performed. The TCA should be discontinued if there is evidence of pathological neutrophil depression. On rare occasions, there have been reports of leukopenia, agranulocytosis, neutropenia, thrombocytopenia, anemia, and pancytopenia in association with TCA use.

 

Tricyclic antidepressants (TCAs) like amitriptyline should be used with caution in patients who have thyroid disease. Close supervision is required when amitriptyline is given to patients with hyperthyroidism or those patients with hypothyroidism who are receiving thyroid medication.

 

Tricyclic antidepressants (TCAs) affect blood glucose concentrations because of their effect on the endocrine system; both elevation and lowering of blood sugar levels have been reported. Therefore, amitriptyline should be used with caution in patients with diabetes mellitus. TCAs should also be used with caution in patients with tumors of the adrenal medulla (e.g., pheochromocytoma, neuroblastoma) in whom these drugs may provoke hypertensive crises.

 

Tricyclic antidepressants lower the seizure threshold. Because of a potential increased risk of seizures, amitriptyline should not be used during intrathecal radiographic contrast administration. Tricyclic antidepressant therapy should be discontinued 48 hours before and not restarted for at least 24 hours after myelography.

 

Patients may be more prone to sunburn during therapy with amitriptyline. Patients should avoid excessive exposure to sunlight since there have been reports of photosensitization during the use of tricyclic antidepressants (TCAs). Suitable precautions should be taken to limit effects prior to sunlight (UV) exposure, such as wearing long-sleeved clothing and a hat, and using sunscreens.

 

Following prolonged therapy, abrupt discontinuation of a tricyclic antidepressant (TCA) should be avoided because it could precipitate a drug discontinuation syndrome. Symptoms of cholinergic rebound such as nausea, vomiting, or diarrhea may occur. Other typical symptoms of antidepressant discontinuation syndrome include flu-like symptoms, insomnia, imbalance, sensory disturbances, and hyperarousal.

 

Amitriptyline dose selection should generally be cautious in the geriatric patient. Initiation at the low end of the dosage range with slow titration and careful observation is recommended. Geriatric patients are particularly sensitive to the peripheral and central anticholinergic side effects of amitriptyline and may be at increased risk for falls. According to the Beers Criteria, tricyclic antidepressants (TCAs) are considered potentially inappropriate medications (PIMs) in geriatric patients; avoid TCA use due to the potential for orthostatic hypotension, anticholinergic effects or toxicity (e.g., constipation, urinary difficulties, blurred vision, dry mouth, delirium), or sedation. Avoid TCA use in geriatric patients with the following conditions due to the potential for symptom exacerbation or adverse effects: syncope (increased risk of orthostatic hypotension or bradycardia), dementia/cognitive impairment (drug-induced CNS effects), delirium/high risk of delirium (new-onset or worsening delirium), or lower urinary tract symptoms/benign prostatic hyperplasia in men (urinary retention or hesitancy). Further, the Beers expert panel recommends avoiding TCAs in elderly patients with a history of falls or fractures, unless safer alternatives are not available, since TCAs can produce ataxia, impaired psychomotor function, syncope, and additional falls. If amitriptyline must be used in an elderly patient with a history of falls or fractures, consider reducing use of other CNS-active medications that increase the risk of falls and fractures and implement other strategies to reduce fall risk. Lastly, TCAs can cause or exacerbate hyponatremia and SIADH and the elderly are at increased risk of developing these conditions. Sodium levels should be closely monitored when starting or changing dosages of TCAs in older adults. The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of antidepressants in residents of long-term care facilities; the duration of therapy should be in accordance with pertinent literature and clinical practice guidelines. TCAs are rarely the medications of choice in the elderly because of strong anticholinergic and sedating properties. However, TCAs may be appropriate in residents being treated for neurogenic pain when the benefits outweigh the risks and safer medications or interventions are either not indicated or have been considered, attempted, and failed. All residents being treated for depression with any antidepressant should be monitored closely for worsening of depression and/or suicidal behavior or thinking, especially during initiation of therapy and during dose changes. Antidepressants may cause dizziness, nausea, diarrhea, anxiety, nervousness, insomnia, somnolence, weight gain, anorexia, or increased appetite. Many of these effects can increase the risk for falls. Prior to discontinuation, many antidepressants may need a taper to avoid a withdrawal syndrome. Monitoring should consist of a review for continued need at least quarterly, and documentation of the rationale for continuation. When the drug is being used to manage behavior, stabilize mood, or treat a psychiatric disorder, the facility should attempt to taper the medication as outlined in the OBRA guidelines, unless a taper is clinically contraindicated.

 

Tobacco smoking has been shown to increase the clearance of tricyclic antidepressants (TCAs), including amitriptyline, by inducing hepatic microsomal enzymes. The effect of tobacco on hepatic microsomal enzymes is not related to the nicotine component, so sudden smoking cessation may result in a reduced clearance of amitriptyline and increased amitriptyline effects, despite the initiation of nicotine replacement products.

 

Baclofen

 

Geriatric patients or patients with cerebral lesions as opposed to spinal lesions may experience increased toxicity to baclofen. Elderly patients require lower initial doses and slow dose titration. The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of medications in residents of long-term care facilities. According to the OBRA guidelines, most muscle relaxants are poorly tolerated by older adults due to anticholinergic side effects, sedation, and/or weakness. However, periodic use (e.g., once every 3 months) for no more than 7 days may be appropriate when other interventions or alternative medications are not effective or indicated. Chronic use in individuals with complications due to multiple sclerosis, spinal cord injuries, cerebral palsy, and other select conditions may be indicated, although close monitoring is warranted. Abrupt discontinuation of some muscle relaxants may cause or predispose individuals to seizures or hallucinations.

 

Patients with pre-existing psychiatric disorders (e.g., bipolar disorder, depression, psychosis, schizophrenia) are at increased risk for baclofen-induced psychiatric adverse reactions.

 

Hyperglycemia is associated with oral and intrathecal baclofen use. Use with appropriate caution in patients with diabetes mellitus.

 

Baclofen has caused deterioration in the control of seizures and EEG changes in patients with epilepsy. Baclofen should be prescribed cautiously to patients with a history of a seizure disorder or a history of seizures.

 

Cases of baclofen toxicity (manifesting as encephalopathy, abdominal pain, and in some cases, seizures and respiratory depression) have been reported in patients with severe renal impairment (e.g., serum creatinine more than 2 mg/dL) and renal failure who received oral baclofen. Most patients who became toxic received low oral doses of baclofen (e.g., 15 to 30 mg/day) for a short duration. Baclofen toxicity can occur with relatively low doses within 24 to 48 hours of initiation of oral therapy. In renal failure patients receiving dialysis, doses not exceeding 5 mg/day orally have been suggested; although toxicity may still occur. Therefore, in patients with severe renal impairment or renal failure, alternative therapies should be considered. If a patient develops baclofen toxicity, hemodialysis may be a useful treatment to alleviate clinical symptoms.Similar toxicity is not expected with intrathecal use of baclofen as resultant drug plasma concentrations are 100-fold lower then those experienced with oral use.

 

Patients should be warned that baclofen may impair the ability to perform certain tasks that require mental alertness or physical coordination such as driving or operating machinery. Patients should also be cautioned that the central nervous system (CNS) depressant effects of baclofen may be additive to those of ethanol ingestion and coadministration with other CNS depressants.

 

Gabapentin

 

Monitor all patients beginning treatment with antiepileptic drugs (AEDs) or currently receiving gabapentin closely for emerging or worsening depression or suicidal ideation. Advise patients and caregivers of the increased risk of suicidal thoughts and behaviors and to immediately report the emergence of new or worsening of depression, suicidal thoughts or behavior, thoughts of self-harm, or other unusual changes in mood or behavior. AEDs should be prescribed in the smallest quantity consistent with good patient management in order to reduce the risk of overdose. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with an increased risk of suicidal thoughts and behavior. If suicidal thoughts and behavior emerge during treatment, consider whether the emergence of these symptoms in any patient may be related to the illness being treated. There is an increased risk of suicidal ideation and behavior in patients receiving AEDs to treat epilepsy, psychiatric disorders, or other conditions (e.g., migraine, neuropathic pain). Gabapentin is known to be substantially excreted by the kidney. Adjust the gabapentin dose in patients with renal impairment or renal failure undergoing dialysis, such as hemodialysis.

 

Because gabapentin causes somnolence and dizziness, advise patients against driving or operating machinery until they have gained enough experience on gabapentin to assess whether gabapentin impairs their ability to perform such tasks. Driving performance studies conducted with a prodrug of gabapentin (gabapentin enacarbil) indicate that gabapentin may cause significant driving impairment. The patients’ ability to assess their own driving competence, as well as their ability to assess the degree of somnolence caused by gabapentin, can be imperfect. The duration of driving impairment after starting therapy with gabapentin is unknown. Whether the impairment is related to somnolence or other effects of gabapentin is unknown.

 

When using gabapentin, carefully evaluate patients for a history of substance abuse and monitor for signs and symptoms of gabapentin misuse or abuse (e.g., development of tolerance, self-dose escalation, and drug-seeking behavior). A small number of postmarketing cases report gabapentin misuse and abuse.

 

Initiate gabapentin at the lowest recommended dose and monitor for symptoms of respiratory depression and sedation in elderly patients, patients with underlying pulmonary disease, such as chronic obstructive pulmonary disease (COPD), and during coadministration with other CNS depressants. Serious, life-threatening, and fatal respiratory depression has been reported with gabapentin. Most cases involved coadministration of another CNS depressant, particularly opioids, in patients with underlying respiratory impairment or advanced age. Respiratory depression, if left untreated, may cause respiratory arrest and death. Management of respiratory depression should include observation, necessary supportive measures, and reduction or withdrawal of CNS depressants, including gabapentin. Taper the dose of gabapentin used for analgesia or seizure control before discontinuation

Pregnancy
Breastfeeding
Adverse Reactions / Side Effects

Amitriptyline Hydrochloride / Baclofen / Gabapentin Vaginal Cream may relieve symptoms associated with vulvodynia and Provoked Vestibulodynia.

This cream is formulated to act locally so side effects are generally minimal, but may include skin irritation, headache, dizziness, and somnolence. However, possible side effects include but are not limited to those of each of the cream’s components. The side effects of these compounds in combination have not been studied.

Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, swollen painful area on the leg.

Storage

Store this medication in its original container at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Arousal Cream

Dosage Strengths

Arousal 1: Aminophylline 30 mg/mL, Ergoloid Mesylate 0.5 mg/mL, Pentoxifylline 50 mg/mL, Sildenafil Citrate 10 mg/mL, Testosterone 1 mg/mL, L-Arginine 60 mg/mL 30 mL 

 

Arousal 2: Aminophylline 30 mg/mL, Ergoloid Mesylate 0.5 mg/mL, Pentoxifylline 50 mg/mL, Sildenafil Citrate 10 mg/mL, Testosterone 1 mg/mL 30 mL 

 

Arousal 3: Aminophylline 30 mg/mL, Ergoloid Mesylate 0.5 mg/mL, Pentoxifylline 50 mg/mL, Testosterone 1 mg/mL, L-Arginine 60 mg/mL 30 mL 

 

Arousal 4: Aminophylline 30 mg/mL, Ergoloid Mesylate 0.5 mg/mL, Pentoxifylline 50 mg/mL, Sildenafil Citrate 10 mg/mL, L-Arginine 60 mg/mL 30 mL 

 

Arousal 5: Aminophylline 30 mg/mL, Ergoloid Mesylate 0.5 mg/mL, Pentoxifylline 50 mg/mL, Sildenafil Citrate 10 mg/mL 30 mL 

General Information

Arousal Cream, which also goes by the name of Scream Cream, is a topical cream that, when applied to the clitoris or external genitalia, can increase blood flow to the applied area and has been reported to improve sensitivity and rates of orgasm. Compounded from a mixture of prescription products, Arousal Cream is designed to act locally without substantial absorption into the blood stream. This transdermal (absorbed through the skin) cream is comprised of six different medications and products which include: aminophylline, ergoloid mesylate, L-arginine, pentoxifylline, sildenafil citrate, and testosterone. This synergistic medication draws upon the properties of each ingredient (one bronchodilator, four vasodilators, and the potent sex steroid hormone testosterone) that can provide female libido (sex drive) and sexual stimulation enhancement.

Mechanism of Action

Arousal Cream’s four vasodilators contribute by relaxing the vascular smooth muscles, which consequently dilates peripheral blood vessels (arteries and especially veins). Dilatation (widening) of the blood vessels promotes peripheral pooling of blood and decreases venous return to the heart, thereby reducing left ventricular end-diastolic pressure and pulmonary capillary wedge pressure (preload). Such medications are primarily used to treat or prevent heart disease due to arterial plaque buildup, blood clots, platelet clumping, and to increase blood flow through the coronary artery. These medications are also used to ease migraines, improve blood pressure to organs and tissues, lessen recovery time after surgery, increase immune-boosting effects, and speed up tissue repair/wound healing. However, they contribute to the Arousal Cream complex by exerting effects on the female genitalia. The same vasoactive mechanisms used by these agents to improve blood flow to the heart, lungs, and many other bodily tissues and functions, is believed to also increase vaginal blood flow during stimulation, thereby effectively aiding in the treatment of sexual dysfunctions.

Pharmacokinetics
Contraindications/ Precautions

If you have contraindications with intercourse, you should consult your healthcare provider before using the medication and engaging in intercourse. You should not use this cream if you are allergic to any of the ingredients, have a history of genital herpes (*L-Arginine may facilitate replication of the herpes virus. An alternative formulation without L-Arginine is available.), chronic vaginal infections, or serious medical conditions such as heart disease or autoimmune disorder.

 

Additionally, despite acting almost exclusively locally, the contraindications for each of Arousal Cream’s compounds may apply. Provide your physician with information on Arousal Cream, as well as a list of your medical conditions before asking for a prescription.

Pregnancy

DO NOT USE AROUSAL CREAM while pregnant or trying to become pregnant: one of Arousal Cream’s ingredients, Testosterone, is an FDA pregnancy risk category X (adverse fetal effects are expected). An alternative formulation without testosterone is available.

Breastfeeding

As a testosterone-containing product, Arousal Cream is contraindicated in women who are breast-feeding.

Interactions

Arousal Cream acts synergistically via six distinct pharmacologically active compounds and each has its own list of compounds it interacts with. Interactions resulting from the combination of these compounds have not been studied and may include more than the sum of all compounds. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.

Adverse Reactions / Side Effects

Arousal Cream promotes blood flow to the applied area to improve sensitivity and rates of orgasm: it does not produce an orgasm. If not completely absorbed, it may cause irritation with your partner.

Arousal Cream is formulated to act locally so side effects are minimal, but may include skin irritation, headache, dizziness, and restlessness. However, possible side effects include but are not limited to those of each of Arousal Cream’s components. The side effects of these compounds in combination have not been studied.

Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, swollen painful area on the leg.

How Is This Medication Best Taken?

Apply 1/4 – 1/2 mL of cream onto clitoris and/or external genital 15-30 minutes prior to sex. Arousal Cream should be massaged gently into the area until it is completely absorbed. Duration of effect is 30 minutes to 2 hours and reapplication may occur as needed.

Make sure to talk to your physician or pharmacist about how frequently you should be using Arousal Cream and how much you should apply.

Storage

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Formulation Compounding Center Affiliated Partners

National Community Pharmacists Association
MEDISCA Your Trusted Partner In Compounding
Fagron
PCCA